64 research outputs found

    Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibacterial activity is a novel function of high-mobility group box 1 (HMGB1). However, the functional site for this new effect is presently unknown.</p> <p>Methods and Results</p> <p>In this study, recombinant human HMGB1 A box and B box (rHMGB1 A box, rHMGB1 B box), recombinant human HMGB1 (rHMGB1) and the truncated C-terminal acidic tail mutant (tHMGB1) were prepared by the prokaryotic expression system. The C-terminal acidic tail (C peptide) was synthesized, which was composed of 30 amino acid residues. Antibacterial assays showed that both the full length rHMGB1 and the synthetic C peptide alone could efficiently inhibit bacteria proliferation, but rHMGB1 A box and B box, and tHMGB1 lacking the C-terminal acidic tail had no antibacterial function. These results suggest that C-terminal acidic tail is the key region for the antibacterial activity of HMGB1. Furthermore, we prepared eleven different deleted mutants lacking several amino acid residues in C-terminal acidic tail of HMGB1. Antibacterial assays of these mutants demonstrate that the amino acid residues 201-205 in C-terminal acidic tail region is the core functional site for the antibacterial activity of the molecule.</p> <p>Conclusion</p> <p>In sum, these results define the key region and the crucial site in HMGB1 for its antibacterial function, which is helpful to illustrating the antibacterial mechanisms of HMGB1.</p

    The Bcl-2/xL inhibitor ABT-263 increases the stability of Mcl-1 mRNA and protein in hepatocellular carcinoma cells

    Get PDF
    Background Hepatocellular carcinoma (HCC) is one of the major causes of mortality. ABT-263 is a newly synthesized, orally available Bcl-2/xL inhibitor that shows promising efficacy in HCC therapy. ABT-263 inhibits the anti-apoptotic activity of Bcl-2 and Bcl-xL, but not Mcl-1. Previous reports have shown that ABT-263 upregulates Mcl-1 in various cancer cells, which contributes to ABT-263 resistance in cancer therapy. However, the associated mechanisms are not well known. Methods Western blot, RNAi and CCK-8 assays were used to investigate the relationship between Mcl-1 upregulation and ABT-263 sensitivity in HCC cells. Real-time PCR and Western blot were used to detect Mcl-1 mRNA and protein levels. Luciferase reporter assay and RNA synthesis inhibition assay were adopted to analyze the mechanism of Mcl-1 mRNA upregulation. Western blot and the inhibition assays for protein synthesis and proteasome were used to explore the mechanisms of ABT-263-enhanced Mcl-1 protein stability. Trypan blue exclusion assay and flow cytometry were used to examine cell death and apoptosis. Results ABT-263 upregulated Mcl-1 mRNA and protein levels in HCC cells, which contributes to ABT-263 resistance. ABT-263 increased the mRNA level of Mcl-1 in HCC cells by enhancing the mRNA stability without influencing its transcription. Furthermore, ABT-263 increased the protein stability of Mcl-1 through promoting ERK- and JNK-induced phosphorylation of Mcl-1Thr163 and increasing the Akt-mediated inactivation of GSK-3β. Additionally, the inhibitors of ERK, JNK or Akt sensitized ABT-263-induced apoptosis in HCC cells. Conclusions ABT-263 increases Mcl-1 stability at both mRNA and protein levels in HCC cells. Inhibition of ERK, JNK or Akt activity sensitizes ABT-263-induced apoptosis. This study may provide novel insights into the Bcl-2-targeted cancer therapeutics.This study was supported in part by Chongqing Natural Science Foundation (cstc2011BB5030 and 2013jjB10015), the National Natural Science Foundation of China (31201068, 81273226 and 81228005) and the Scientific Funds of Third Military Medical University (2011XHG02 and 2012XZH01)

    The Anti-Inflammatory Activity of HMGB1 A Box Is Enhanced When Fused with C-Terminal Acidic Tail

    Get PDF
    HMGB1, composed of the A box, B box, and C tail domains, is a critical proinflammatory cytokine involved in diverse inflammatory diseases. The B box mediates proinflammatory activity, while the A box alone acts as a specific antagonist of HMGB1. The C tail contributes to the spatial structure of A box and regulates HMGB1 DNA binding specificity. It is unknown whether the C tail can enhance the anti-inflammatory effect of A box. In this study, we generated fusion proteins consisting of the A box and C tail, in which the B box was deleted and the A box and C tail were linked either directly or by the flexible linker sequence (Gly4Ser)3. In vitro and in vivo experiments showed that the two fusion proteins had a higher anti-inflammatory activity compared to the A box alone. This suggests that the fused C tail enhances the anti-inflammatory effect of the A box

    The novel BH-3 mimetic apogossypolone induces Beclin-1- and ROS-mediated autophagy in human hepatocellular carcinoma cells

    Get PDF
    Apogossypolone (ApoG2), a novel derivative of gossypol, exhibits superior antitumor activity in Bcl-2 transgenic mice, and induces autophagy in several cancer cells. However, the detailed mechanisms are not well known. In the present study, we showed that ApoG2 induced autophagy through Beclin-1- and reactive oxygen species (ROS)-dependent manners in human hepatocellular carcinoma (HCC) cells. Incubating the HCC cell with ApoG2 abrogated the interaction of Beclin-1 and Bcl-2/xL, stimulated ROS generation, increased phosphorylation of ERK and JNK, and HMGB1 translocation from the nucleus to cytoplasm while suppressing mTOR. Moreover, inhibition of the ROS-mediated autophagy by antioxidant N-acetyl-cysteine (NAC) potentiates ApoG2-induced apoptosis and cell killing. Our results show that ApoG2 induced protective autophagy in HCC cells, partly due to ROS generation, suggesting that antioxidant may serve as a potential chemosensitizer to enhance cancer cell death through blocking ApoG2-stimulated autophagy. Our novel insights may facilitate the rational design of clinical trials for Bcl-2-targeted cancer therapy.Grant support: This study was supported in part by Chongqing Natural Science Foundation (CSTC, 2011BB5030), and by the Scientific Funds of Third Military Medical University (2011XHG02)

    Overcoming chemo/radio-resistance of pancreatic cancer by inhibiting STAT3 signaling

    Get PDF
    Chemo/radio-therapy resistance to the deadly pancreatic cancer is mainly due to the failure to kill pancreatic cancer stem cells (CSCs). Signal transducer and activator of transcription 3 (STAT3) is activated in pancreatic CSCs and, therefore, may be a valid target for overcoming therapeutic resistance. Here we investigated the potential of STAT3 inhibition in sensitizing pancreatic cancer to chemo/radio-therapy. We found that the levels of nuclear pSTAT3 in pancreatic cancer correlated with advanced tumor grade and poor patient outcome. Liposomal delivery of a STAT3 inhibitor FLLL32 (Lip-FLLL32) inhibited STAT3 phosphorylation and STAT3 target genes in pancreatic cancer cells and tumors. Consequently, Lip-FLLL32 suppressed pancreatic cancer cell growth, and exhibited synergetic effects with gemcitabine and radiation treatment in vitro and in vivo. Furthermore, Lip-FLLL32 reduced ALDH1-positive CSC population and modulated several potential stem cell markers. These results demonstrate that Lip-FLLL32 suppresses pancreatic tumor growth and sensitizes pancreatic cancer cells to radiotherapy through inhibition of CSCs in a STAT3-dependent manner. By targeting pancreatic CSCs, Lip-FLLL32 provides a novel strategy for pancreatic cancer therapy via overcoming radioresistance

    MiR-137 Targets Estrogen-Related Receptor Alpha and Impairs the Proliferative and Migratory Capacity of Breast Cancer Cells

    Get PDF
    ERRα is an orphan nuclear receptor emerging as a novel biomarker of breast cancer. Over-expression of ERRα in breast tumor is considered as a prognostic factor of poor clinical outcome. The mechanisms underlying the dysexpression of this nuclear receptor, however, are poorly understood. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play important roles in tumor initiation and progression. In the present study, we have identified that the expression of ERRα is regulated by miR-137, a potential tumor suppressor microRNA. The bioinformatics search revealed two putative and highly conserved target-sites for miR-137 located within the ERRα 3′UTR at nt 480–486 and nt 596–602 respectively. Luciferase-reporter assay demonstrated that the two predicted target sites were authentically functional. They mediated the repression of reporter gene expression induced by miR-137 in an additive manner. Moreover, ectopic expression of miR-137 down-regulated ERRα expression at both protein level and mRNA level, and the miR-137 induced ERRα-knockdown contributed to the impaired proliferative and migratory capacity of breast cancer cells. Furthermore, transfection with miR-137mimics suppressed at least two downstream target genes of ERRα–CCNE1 and WNT11, which are important effectors of ERRα implicated in tumor proliferation and migration. Taken together, our results establish a role of miR-137 in negatively regulating ERRα expression and breast cancer cell proliferation and migration. They suggest that manipulating the expression level of ERRα by microRNAs has the potential to influence breast cancer progression

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    The downregulation of ATG4B mediated by microRNA-34a/34c-5p suppresses rapamycin-induced autophagy

    No full text
    Objective(s): Autophagy-related 4B (ATG4B) plays an important role in the process of autophagy induction. However, the molecular events that govern the expression of ATG4B in this process are not well known. Materials and Methods: Human ATG4B 3'-UTR region (1377 nt) containing miR-34a/miR-34c-5p binding site was amplified by PCR. Luciferase assay was used to assess the activity of reporter genes. Real-time PCR was used to detect the levels of miR-34a and miR-34c-5p. Western blot was used to analyze the protein levels of ATG4B, LC3 and p62. Results: Both miR-34a and miR-34c-5p could directly target the 3'-UTR of ATG4B mRNA at same site. Overexpression of either miR-34a or miR-34c-5p significantly down-regulated ATG4B at both mRNA and protein levels and this effect can be reversed by ATG4B overexpression. Moreover, Rapamycin-induced autophagy is accompanied with the upregulation of ATG4B and the downregulation of miR-34a/miR-34c-5p. Ectopic expression of either miR-34a or miR-34c-5p markedly suppressed rapamycin-triggered autophagy. Conclusion: In the present study, we found that miR34/ATG4B signaling axis involves in rapamycin-triggered autophagy. This study may provide a new insight for understanding the mechanisms of ATG4B regulation and autophagy induction

    Ecohydrological response to multi-model land use change at watershed scale

    No full text
    Study region: The Min River basin, China. Study focus: In order to investigate the ecohydrological response under historical and future land use changes, we simulated daily runoff sequences under different land use scenarios by coupling the PLUS model with the Physical Hydrological Model and quantitatively assessed the ecohydrological impacts of different land use changes in the watershed by combining the IHA method. New hydrological insights for the region: The Min River Basin is dominated by grassland, woodland and, cultivated land which account for 94 % of the total. During the period 2000–2020, the area of cultivated land decreased by 4.47 % overall, and construction land increased by 78.68 % overall. Compared to the base year of 2010, the multi-year average monthly runoff increased under different land use scenarios. The high flow indicators (1 daymax, 7 daymax, and 30 daymax) had the largest increasing trend under the natural development scenario in 2030, 54 m3/s, 33 m3/s, and 24 m3/s, respectively, whereas their increase decreased under the ecological protection scenario in 2030; the low flow indicators (1 daymin, 7 daymin, and 30 daymin) decreased less in the 2030 eco-protection scenario than in the natural development scenario, where they decreased by − 5 m3/s, − 9 m3/s, and − 11 m3/s, respectively. The results of the study contribute to a deeper understanding of the response of watershed hydrological processes to land-use change
    corecore